Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Talanta ; 273: 125841, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38460421

ABSTRACT

The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture. The optimized procedure of square wave voltammetry allowed to reliably detect the product generated by RPA at 80 % substitution of dTTP by dUTP-Y1 (dsDNA-Y1) in microliter sample volumes on the surface of disposable carbon screen printed electrodes at the potential of about 0.6 V. The calibration curve for the amplicon detection was linear in coordinates 'Ip, A vs. Log (c, M)' within the 0.05-1 µM concentration range. The limit of detection for dsDNA-Y1 was estimated as 8 nM. The sensitivity of the established electrochemical approach allowed to detect amplicons generated in a single standard 50 µL RPA reaction after their purification with silica-coated magnetic beads. The overall detectability of D. solani with the suggested combination of RPA and voltammetric registration of dsDNA-Y1 can be as low as a few copies of bacterial genome per standard reaction. In total, amplification, purification, and electrochemical detection take about 120-150 min. Considering the potential of direct electrochemical analysis for miniaturization, as well as compliance with low-cost and low-power requirements, the findings provide grounds for future development of microfluidic devices integrating isothermal amplification, amplicon purification and detection based on the tyrosine modified nucleotide for the purpose of 'on-site' detection of various pathogens.


Subject(s)
Dickeya , Polyphosphates , Recombinases , Solanum tuberosum , DNA , Enterobacteriaceae , Nucleotides , Deoxyuridine , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
2.
J Pharm Biomed Anal ; 241: 115977, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38241909

ABSTRACT

Three novel 2'-deoxyuridine-5'-triphosphates modified with 4-nitrophenyl groups via various linkers (dUTP-N1, dUTP-N2, and dUTP-N3) were tested as bearers of reducible electroactive labels as well as substrates suitable for enzymes used in polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) with a potential application to direct electrochemical detection of double-stranded deoxyribonucleic acid (dsDNA). In cyclic and square wave voltammograms on carbon screen printed electrodes, the labeled dUTP have demonstrated distinct reduction peaks at potentials of -0.7 V to -0.9 V (phosphate buffer, pH 7.4). The reduction peak currents of dUTP-N derivatives were found to increase with their molar concentrations. The dUTP-N3 with a double bond in the linker had the lowest reduction potential (about 100 mV less negative) among the derivatives studied. Further, dUTP-N nucleotides were tested as substrates in PCR and RPA to incorporate the electroactive labels into 90, 210, or 206 base pair long dsDNA amplicons. However, only a dUTP-N1 derivative with a shorter linker without the double bond demonstrated satisfactory compatibility with both PCR and RPA, though with a low reaction output of modified dsDNA amplicons (at 100% substitution of dTTP). The dsDNA amplicons produced by PCR with 85% substitution of dTTP by the dUTP-N1 in the reaction mixture were successfully detected by square wave voltammetry at micromolar concentrations at high square wave frequency.


Subject(s)
DNA , Nitrophenols , DNA/chemistry , Nucleotides , Deoxyuridine
3.
Int J Mol Sci ; 24(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003667

ABSTRACT

RNA modifications, particularly N6-methyladenosine (m6A), are pivotal regulators of RNA functionality and cellular processes. We analyzed m6A modifications by employing Oxford Nanopore technology and the m6Anet algorithm, focusing on the HepG2 cell line. We identified 3968 potential m6A modification sites in 2851 transcripts, corresponding to 1396 genes. A gene functional analysis revealed the active involvement of m6A-modified genes in ubiquitination, transcription regulation, and protein folding processes, aligning with the known role of m6A modifications in histone ubiquitination in cancer. To ensure data robustness, we assessed reproducibility across technical replicates. This study underscores the importance of evaluating algorithmic reproducibility, especially in supervised learning. Furthermore, we examined correlations between transcriptomic, translatomic, and proteomic levels. A strong transcriptomic-translatomic correlation was observed. In conclusion, our study deepens our understanding of m6A modifications' multifaceted impacts on cellular processes and underscores the importance of addressing reproducibility concerns in analytical approaches.


Subject(s)
Nanopores , Methylation , Proteomics , Reproducibility of Results , RNA/metabolism , Adenosine/metabolism , Cell Line
4.
J Pharm Biomed Anal ; 236: 115737, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37774487

ABSTRACT

The 2'-deoxyuridine-5'-triphosphates modified with fluorescein (dUTP-Fl) or rhodamine (dUTP-Rh) were tested as bearers of electroactive labels and as proper substrates for polymerases used in polymerase chain reaction (PCR) and isothermal recombinase polymerase amplification (RPA) with the aim of electrochemical detection of double-stranded DNA (dsDNA) amplification products. For this purpose, electrochemical behavior of free fluorescein and rhodamine as well as the modified nucleotides, dUTP-Fl and dUTP-Rh, was studied by cyclic (CV) and square wave (SWV) voltammetry on carbon screen printed electrodes. Both free fluorescein and dUTP-Fl underwent a two-step oxidation at the peak potentials (Ep) of 0.6-0.7 V and 0.8-0.9 V (phosphate buffer, pH 7.4). The reduction peaks of fluorescein and dUTP-Fl were registered between -0.9 V and -1 V, but they did not depend on concentration. The free rhodamine and dUTP-Rh have demonstrated the well-defined oxidation peaks at 0.8-0.9 V. In addition, the distinct reduction peaks at Ep between -0.8 V and -0.9 V were registered for both rhodamine and dUTP-Rh. The dUTP-Fl and dUTP-Rh were further tested as substrates to incorporate an electroactive label into 210 or 206 base pair long dsDNA amplicons generated either by PCR or RPA. Among two dUTP derivatives tested, dUTP-Fl revealed significantly better compatibility with PCR and RPA, producing the full-size amplicons at 50-90% substitution of dTTP in the reaction mixture. In the PCR, the best compromise between amplicon output and labeling was achieved at the dUTP-Fl : dTTP and dUTP-Rh : dTTP molar ratios of 70% : 30% and 20% : 80% in the PCR mixture, respectively, allowing the direct electrochemical detection of amplicons at micromolar concentrations. Alongside with fluorescence DNA assays, the fluorescein and rhodamine modified dUTP appear as promising electroactive labels to develop direct electrochemical DNA assays for detecting PCR and RPA products.


Subject(s)
DNA , Deoxyuridine , Rhodamines , Fluorescein , DNA/analysis , Polymerase Chain Reaction
5.
Biomolecules ; 10(6)2020 06 25.
Article in English | MEDLINE | ID: mdl-32630528

ABSTRACT

The coordination of zinc ions by histidine residues of amyloid-beta peptide (Aß) plays a critical role in the zinc-induced Aß aggregation implicated in Alzheimer's disease (AD) pathogenesis. The histidine to arginine substitution at position 6 of the Aß sequence (H6R, English mutation) leads to an early onset of AD. Herein, we studied the effects of zinc ions on the aggregation of the Aß42 peptide and its isoform carrying the H6R mutation (H6R-Aß42) by circular dichroism spectroscopy, dynamic light scattering, turbidimetric and sedimentation methods, and bis-ANS and thioflavin T fluorescence assays. Zinc ions triggered the occurrence of amorphous aggregates for both Aß42 and H6R-Aß42 peptides but with distinct optical properties. The structural difference of the formed Aß42 and H6R-Aß42 zinc-induced amorphous aggregates was also supported by the results of the bis-ANS assay. Moreover, while the Aß42 peptide demonstrated an increase in the random coil and ß-sheet content upon complexing with zinc ions, the H6R-Aß42 peptide showed no appreciable structural changes under the same conditions. These observations were ascribed to the impact of H6R mutation on a mode of zinc/peptide binding. The presented findings further advance the understanding of the pathological role of the H6R mutation and the role of H6 residue in the zinc-induced Aß aggregation.


Subject(s)
Alzheimer Disease/chemically induced , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Mutation , Protein Aggregates/drug effects , Zinc/pharmacology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Humans , Zinc/metabolism
6.
J Alzheimers Dis ; 63(2): 539-550, 2018.
Article in English | MEDLINE | ID: mdl-29630553

ABSTRACT

Zinc-induced aggregation of amyloid-ß peptides (Aß) is considered to contribute to the pathogenesis of Alzheimer's disease. While glycosaminoglycans (GAGs) that are commonly present in interneuronal space are known to enhance Aß self-aggregation in vitro, the impact of GAGs on the formation of zinc-induced amorphous Aß aggregates has not yet been thoroughly studied. Here, employing dynamic light scattering, bis-ANS fluorimetry, and sedimentation assays, we demonstrate that heparin serving as a representative GAG modulates the kinetics of zinc-induced Aß42 aggregation in vitro by slowing the rate of aggregate formation and aggregate size growth. By using synthetic Aß16 peptides to model the Aß metal-binding domain (MBD), heparin was found to effectively interact with MBDs in complex with zinc ions. We suggest that heparin adsorbs to the surface of growing zinc-induced Aß42 aggregates via electrostatic interactions, thus creating a steric hindrance that inhibits further inclusion of monomeric and/or oligomeric zinc-Aß42 complexes. Furthermore, the adsorbed heparin can interfere with the zinc-bridging mechanism of Aß42 aggregation, requiring the formation of two zinc-mediated interaction interfaces in the MBD. As revealed by computer simulations of the zinc-Aß16 homodimer complexed with a heparin chain, heparin can interact with the MBD via polar contacts with residues Arg-5 and Tyr-10, resulting in a conformational rearrangement that hampers the formation of the second zinc-mediated interaction in the MBD interface. The findings of this study suggest that GAGs, which are common in the in vivo macromolecular environment, may have a substantial impact on the time course of zinc-induced Aß aggregation.


Subject(s)
Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Zinc/chemistry , Amyloid beta-Peptides/metabolism , Heparin/classification , Heparin/metabolism , Ions/chemistry , Ions/metabolism , Kinetics , Molecular Dynamics Simulation , Peptide Fragments/metabolism , Protein Aggregates , Protein Aggregation, Pathological/metabolism , Static Electricity
7.
J Alzheimers Dis ; 54(2): 809-19, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27567853

ABSTRACT

Amyloid-ß peptide (Aß) plays a central role in Alzheimer's disease (AD) pathogenesis. Besides extracellular Aß, intraneuronal Aß (iAß) has been suggested to contribute to AD onset and development. Based on reported in vitro Aß-DNA interactions and nuclear localization of iAß, the interference of iAß with the normal DNA expression has recently been proposed as a plausible pathway by which Aß can exert neurotoxicity. Employing the sedimentation assay, thioflavin T fluorescence, and dynamic light scattering we have studied effects of zinc ions on binding of RNA and single- and double-stranded DNA molecules to Aß42 aggregates. It has been found that zinc ions significantly enhance the binding of RNA and DNA molecules to pre-formed ß-sheet rich Aß42 aggregates. Another type of Aß42 aggregates, the zinc-induced amorphous aggregates, was demonstrated to also bind all types of nucleic acids tested. To evaluate the role of the Aß metal-binding domain's histidine residues in Aß-nucleic acid interactions mediated by zinc, Aß16 mutants with substitutions H6R and H6A-H13A and rat Aß16 lacking histidine residue 13 were used. The zinc-induced interaction of Aß16 with DNA was shown to critically depend on histidine residues 6 and 13. However, the inclusion of H6R mutation in Aß42 peptide did not affect DNA binding to Aß42 aggregates. Since oxidative and/or nitrosative stresses implicated in AD pathogenesis are known to release zinc ions from metallothioneins in cytoplasm and cell nuclei, our findings suggest that intracellular zinc can be an important player in iAß-nucleic acid interactions.


Subject(s)
Amyloid beta-Peptides/metabolism , Histidine/physiology , Nucleic Acids/metabolism , Peptide Fragments/metabolism , Protein Aggregates/physiology , Zinc/metabolism , Hep G2 Cells , Humans , Protein Binding/physiology , Zinc/pharmacology
8.
J Struct Biol ; 191(2): 112-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26166326

ABSTRACT

Aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with high affinity and specificity. Usually, they are experimentally selected using the SELEX method. Here, we describe an approach toward the in silico selection of aptamers for proteins. This approach involves three steps: finding a potential binding site, designing the recognition and structural parts of the aptamers and evaluating the experimental affinity. Using this approach, a set of 15-mer aptamers for cytochrome P450 51A1 was designed using docking and molecular dynamics simulation. An experimental evaluation of the synthesized aptamers using SPR biosensor showed that these aptamers interact with cytochrome P450 51A1 with Kd values in the range of 10(-6)-10(-7) M.


Subject(s)
Aptamers, Nucleotide/chemistry , Cytochrome P-450 Enzyme System/chemistry , Binding Sites , Models, Molecular , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , Nucleic Acid Conformation , Protein Structure, Tertiary , Structure-Activity Relationship
9.
J Alzheimers Dis ; 36(4): 633-6, 2013.
Article in English | MEDLINE | ID: mdl-23645095

ABSTRACT

The interaction of the 16-mer synthetic peptide (Aß16), which represents the metal-binding domain of the amyloid-ß with DNA, was studied employing the surface plasmon resonance technique. It has been shown that Aß16 binds to the duplex DNA in the presence of zinc ions and thus the metal-binding domain can serve as a zinc-dependent DNA-binding site of the amyloid-ß. The interaction of Aß16 with DNA most probably depends on oligomerization of the peptide and is dominated by interaction with phosphates of the DNA backbone.


Subject(s)
Amyloid beta-Peptides/metabolism , DNA/metabolism , Peptide Fragments/metabolism , Zinc/metabolism , Animals , Binding Sites/physiology , Humans
10.
J Proteome Res ; 12(1): 123-34, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23256950

ABSTRACT

The final goal of the Russian part of the Chromosome-centric Human Proteome Project (C-HPP) was established as the analysis of the chromosome 18 (Chr 18) protein complement in plasma, liver tissue and HepG2 cells with the sensitivity of 10(-18) M. Using SRM, we have recently targeted 277 Chr 18 proteins in plasma, liver, and HepG2 cells. On the basis of the results of the survey, the SRM assays were drafted for 250 proteins: 41 proteins were found only in the liver tissue, 82 proteins were specifically detected in depleted plasma, and 127 proteins were mapped in both samples. The targeted analysis of HepG2 cells was carried out for 49 proteins; 41 of them were successfully registered using ordinary SRM and 5 additional proteins were registered using a combination of irreversible binding of proteins on CN-Br Sepharose 4B with SRM. Transcriptome profiling of HepG2 cells performed by RNAseq and RT-PCR has shown a significant correlation (r = 0.78) for 42 gene transcripts. A pilot affinity-based interactome analysis was performed for cytochrome b5 using analytical and preparative optical biosensor fishing followed by MS analysis of the fished proteins. All of the data on the proteome complement of the Chr 18 have been integrated into our gene-centric knowledgebase ( www.kb18.ru ).


Subject(s)
Chromosomes, Human, Pair 18 , Databases, Protein , Proteome/analysis , Blood Proteins/classification , Blood Proteins/genetics , Blood Proteins/metabolism , Chromosomes, Human, Pair 18/genetics , Chromosomes, Human, Pair 18/metabolism , Gene Expression , Genome, Human , Hep G2 Cells , Humans , Liver/metabolism , Mass Spectrometry , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...